
Ground-state properties of gapped graphene using the random phase approximation

Alireza Qaiumzadeh1,2 and Reza Asgari2
1Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran

2School of Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran, Iran
�Received 20 July 2008; revised manuscript received 30 October 2008; published 6 February 2009�

We study the effect of band gap on the ground-state properties of Dirac electrons in a doped graphene within
the random phase approximation at zero temperature. Band gap dependence of the exchange, correlation, and
ground-state energies and the compressibility are calculated. In addition, we show that the conductance in the
gapped graphene is smaller than gapless one. We also calculate the band-gap dependence of charge compress-
ibility and it decreases with increasing the band-gap values.
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I. INTRODUCTION

Graphene is a flat monolayer of carbon atoms tightly
packed into a two-dimensional �2D� honeycomb lattice and it
is a basic building block for all nanostructured carbon. This
stable structure has attracted considerable attention because
of experimental progress1 and because of exotic chiral fea-
ture in its electronic properties and promising applications.2

Very recent experiments on both a suspended graphene and a
graphene on substrate have found remarkably high mobility,
2�105 cm2 /V s, for carrier transport3 at room temperature
which is 2 orders of magnitude higher than the mobility of
silicon wafer used in microprocessors.4

An interesting feature of graphene which makes it very
applicable in semiconductor technology is opening a gap in
the band energy structure of graphene. There are several sce-
narios to open a gap in the band energy structure of
graphene. One is the finite-size effect by using graphene na-
noribbons, where gaps give rise to constriction of the elec-
trons in the ribbon and it depends on the detailed structure of
ribbon edges.5 More precisely, the band gaps with armchair
shaped edges originate from quantum confinement and the
value of the gap depends on the width of the ribbon. For
zigzag shaped edges, on the other hand, the band gaps arise
from a staggered sublattice potential due to magnetization at
the edges.6 Importantly, edge effects play a crucial role in
transport properties. The gap engineering can also be
achieved through doping the graphene with chemical
species7 due to the translational symmetry breaking. The
electronic properties of a graphene interacting with CrO3
molecules have been calculated by using ab initio
calculations.8 This type of calculations predicts the opening
of a gap of about 0.12 eV at the Dirac point. Another sce-
nario is by placing graphene on top of an appropriate sub-
strate which breaks the graphene sublattice symmetry and,
therefore, generates an intrinsic Dirac mass for the charge
carriers.9 Typical substrate is made of hexagonal SiC with a
gap of about 0.26 eV. A recent band-structure calculation for
a graphene on top of a hexagonal boron nitride crystal10 has
been shown a band gap of about 53 meV. The gap can also
be generated dynamically by applying a magnetic field.11

Moreover, when both monolayer and bilayer graphene mate-
rials are covered with water and ammonia molecules, a gap
induces in the spectrum of energy.12 Interestingly, the mecha-

nism with electron hopping on a honeycomb lattice with tex-
tured tight-binding hopping amplitudes, the Kekulè texture,
generates a Dirac gap.13 Eventually, it has been suggested
that a small gap can be opened on the Dirac points due to
spin-orbit coupling or Rashba effect14 which makes the sys-
tem a spin Hall insulator with quantized spin Hall
conductances.15

Recently, the local compressibility of graphene has been
measured16 using a scanable single electron transistor. The
measured compressibility is claimed to be well described by
the kinetic-energy contribution and it is also suggested that
exchange and correlation effects have canceling contribu-
tions. From the theoretical point of view, the compressibility
was first calculated by Peres et al.,17 considering the ex-
change contribution to a noninteracting doped or undoped
graphene flake. A related quantity �� /�n �where � is the
chemical potential and n is the electron density� is recently
considered by Hwang et al.18 within the same approximation
and they stated that correlations and disorder effects would
introduce only small corrections. This statement is only true
in quite large density doped values. To go beyond the ex-
change contribution, the correlation effects were taken into
account by Barlas et al.19 based on an evaluation of
graphene’s exchange and random phase approximation
�RPA� correlation energies. Moreover, Sheehy and
Schmalian,20 by exploiting the proximity to relativistic elec-
tron quantum critical point, derived explicit expressions for
the temperature and density dependence of the compressibil-
ity properties of graphene. Importantly, the effect of disorder
and many-body interactions on the compressibility has been
recently studied by us.21 We successfully demonstrated the
importance of including correlation effects together with dis-
order effects in the thermodynamic quantities. It should be
noticed that all these theoretical efforts have been carried out
for a gapless graphene.

Our aim in this work is to study the ground-state proper-
ties in the presence of Dirac gap and electron-electron inter-
actions. For this purpose, we derive the gap dependence of
the dynamic polarization function for a doped graphene to
calculate the scattering rate, the ground-state energies, and
the compressibility of the system at the level of RPA includ-
ing the opening gap at Dirac point.

We consider different on-site energies for atoms in two
sublattices in graphene which is established experimentally
to be important when an appropriate substrate such a boron
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nitride or SiC is used. The compressibility decreases by in-
creasing the band-gap values due to the sublattice symmetry
breaking.

The rest of this paper is organized as follows. In Sec. II,
we introduce the models for dynamic polarization function
and ground-state energy calculations. We then outline the
calculation of dc conductivity and compressibility. Section
III contains our numerical calculations of ground-state prop-
erties. We conclude in Sec. IV with a brief summary.

II. THEORETICAL APPROACH

We consider a Dirac-type electron in a continuum model
interacting via a Coulomb potential e2 /�r and its Fourier
transform vq=2�e2 / ��q�, where � is the average background
dielectric constant �for instance, ��5.5 for graphene placed
on SiC with the other side being exposed to air� having an
isotropic band gap at Dirac points. If one assumes that the
sublattice symmetry is broken and �a and �b are on-site en-
ergies of atoms A and B, respectively, then the contribution
of the on-site energies in Hamiltonian of graphene can be
written11 as

Ĥ1 = �
k,�

��aa�
†�k�a��k� + �bb�

†�k�b��k��

= �
k,�

�̂k,�
† ��+	0 − �−	3� � �3�̂k,�, �1�

where �+= ��a+�b� /2 that corresponds to the same carrier
density on two sublattices, �−= ��a−�b� /2 is carrier imbal-
ance on two sublattices that leads to break the inversion sym-
metry, 	0 is 2�2 unit matrix, 	3 is a Pauli matrix that acts
on K+ and K− two-degenerate valleys at which � and ��

bands touch, and �3 is Pauli matrix that acts on graphene’s
pseudospin degrees of freedom. Consequently, the noninter-

acting Hamiltonian for a gapped graphene is given by Ĥ0

=�k,��k,�
† Ĥ0�k,�, where

Ĥ0 =�

 �vk̂� 0 0

�vk̂ − 
 0 0

0 0 − 
 − �vk̂�

0 0 − �vk̂ 

� , �2�

where k̂=kx+ iky and � is the spin of charge carrier. Here,
v=3ta /2 is the Fermi velocity, t is the tight-binding hopping
integral, and a is the spacing of the honeycomb lattice. For
the hexagonal crystal structure of graphene, a=1.42 Å is the
carbon-carbon distance, the tight-bonding hopping energy is
t=2.8 eV, and the bare Fermi velocity is v=106 m /s. In the

noninteracting Hamiltonian, Ĥ0 the reference energy ��a
+�b�	0 /2 is subtracted and the energy gap is defined as 2

= ��b−�a� where we expect 
� t. The corresponding four
component pseudospinors of the noninteracting Hamiltonian
are �k,�

† = �+,�
b ,+,�

a ,−,�
a ,−,�

b �. It is easy to diagonalize the
noninteracting Hamiltonian based on pseudospinors in the
conduction and valance bands of energies with eigenvalues
given by �	�2v2k2+
2. Importantly, the low energy quasi-

particle excitations in a gapless graphene are linearly dispers-
ing and it is valid for energy less than 1 eV. Accordingly, the
validity of the noninteracting Hamiltonian given by Eq. �2�
to explore graphene properties is to the case which
	�2v2k2+
2�1 eV. On the other hand, we shall achieve a
conventional two-dimensional electron-gas system by setting
�vk /
�1.

Finally, the total Hamiltonian including the electron-
electron repulsion interaction is given by

Ĥ = Ĥ0 +
1

2S
�
q�0

vq�n̂qn̂−q − N̂� , �3�

where S is the sample area and N̂ is the total number opera-
tor. The presence of a neutralizing background of positive
charge is explicit in Eq. �3�. As we mentioned in Sec. I, this
kind of Hamiltonian can be used in graphene by placing it on
top of an appropriate substrate that breaks the graphene sub-
lattice symmetry and generates an intrinsic Dirac gap.

A central quantity in the theoretical formulation of the
many-body effects in Dirac fermions is the noninteracting
dynamical polarizability function19,22,23 ��0��q , i� ,��
�,
where � is chemical potential. Here, we would like to em-
phasize that we have calculated the gap dependence of the
noninteracting polarization function for doped graphene
however the vacuum polarization function in which �=

has been calculated by Kotov et al.24 They studied the dis-
tribution of polarization charge induced by a Coulomb impu-
rity for undoped graphene. However, we would like to study
the ground-state properties for doped graphene sheets. To
achieve this goal, we write the dynamical polarizability func-
tion in terms of one-body noninteracting Green’s function,

��0��q,�,�� = − i
 d2k

�2��2
 d�

2�
Tr�i�0G�0��k + q,�

+ �,��i�0G�0��k,�,��� , �4�

where one-body noninteracting Green’s function25 by using
the noninteracting Hamiltonian is given by

G�0��k,�,�� = i
− �0� + �v� · k + i


− �2 + �2v2k2 + 
2 − i�

− �
− �0� + �v� · k + i


	�2v2k2 + 
2

����� − 	�2v2k2 + 
2���k − kF� , �5�

in which � matrices are related to Pauli matrices by
�3=−i�0 and � j = �−1� j�3� j for j=1,2 and kF is the Fermi
momentum related to the density of electron as given by kF
= �4�n /g�1/2. g=gvgs=4 is valley and spin degeneracy and �
is the Heaviside step function. The chemical potential is
given by �=	�2v2kF

2 +
2 at zero temperature. After imple-
menting G�0��k ,� ,�� in Eq. �4� and calculating the traces
and integrals, the result is given by the following expression:
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��0��q,i�,�� = −
g

2�v2�� − 
 +
�q

2

2 � 


�q
2 + �2�2 +

1

2	�q
2 + �2�21 −

4
2

�q
2 + �2�2�tan−1	�q

2 + �2�2

2

�� −

�q
2

4	�2�2 + �q
2

�Re�1 −
4
2

�q
2 + �2�2��sin−1� 2� + i��

�q	1 +
4
2

�q
2 + �2�2 � − sin−1� 2
 + i��

�q	1 +
4
2

�q
2 + �2�2 ���

−
�q

2

4	�2�2 + �q
2
Re�2� + i��

�q
�	1 +

4
2

�q
2 + �2�2� − 2� + i��

�q
�2�

+
�q

2

4	��2 + �q
2
Re�2
 + i��

�q
�	1 +

4
2

�q
2 + �2�2� − 2
 + i��

�q
�2�� , �6�

where �q=�vq. By setting 
=0, it is easy to determine that
Eq. �6� reduces to the noninteracting dynamic polarization
function of the gapless graphene sheet.19 Furthermore, for
the half-filed gapped graphene sheet, the noninteracting dy-
namic polarization function, vacuum polarization, is given
by24

��0��q,i�,� = 
� = − g
�q

2

4v2�
� 


�q
2 + �2�2 +

1

2	�q
2 + �2�2

�1 −
4
2

�q
2 + �2�2�tan−1	�q

2 + �2�2

2

�� .

�7�

Using the above results for the noninteracting polarization
function on the imaginary frequency axis, the density of state
at Fermi energy is calculated as

D��F� = D0��F���1 + 
2/�F
2�1/2����F� , �8�

where D0��F�=g�F /2��2v2 is the density of states of gapless
graphene.22 Note that we define �F=�vkF. The linear correc-
tion of expanded gapped polarization function for 
 is zero;
however the quadratic correction is easily obtained,

��0��q,i�,�� � ��0��q,i�,���
=0 −
g

2�v2�1

2
+

�q
2

	�q
2 + �2

�Re� 2 sin−1� 2�
�q

� − �

�q
2 + �2

−
	�q

2 − �2 + i��2

4�q
2 ��
2 + O�
3� , �9�

where the explicit expression of ��0��q , i� ,�� �
=0 is given by
our group.19 Now, we are in the stage to use the noninteract-
ing polarization function given by Eq. �6� to calculate some
physical quantities.

A. Transport scattering time in a gapped graphene

As a first application of the noninteracting polarization
function, we would like to calculate the gapped graphene
transport scattering time by randomly distributed impurity
centers in the relaxation-time approximation.26 The validity
of the Born approximation is discussed by Novikov27 and
here we use this approximation to calculate qualitatively the
graphene transport scattering time. To this purpose, the trans-
port scattering time is given by Boltzmann theory,

1

	��F�
=

2�

�
�

q,s,s�

ni

��vi�q��2�
��q�2 �1 − cos �q,q+kF

�Fs,s��q,q + kF�

���s	�kF

2 + 
2 − s�	�q+kF

2 + 
2� , �10�

where vi�q�= 2�e2

�q exp�−qd� is the Coulomb scattering poten-
tial between an electron and an out-of-plane impurity, ��q� is
the static RPA dielectric function appropriate for graphene,
��q�=1−vq��0��q ,0 ,��, ni is the density of impurities, d is
the setback distance from the graphene sheet, and s ,s� being
�. Since we consider large charge-carrier density and elastic
scattering, we can therefore neglect interband scattering pro-
cess. F��q ,q+kF� is the overlap of states ��=��, which can
be easily calculated from the pseudospinors of Hamiltonian
�Eq. �2��. The result is as follows:

F��q,q + k� =
1

2�1 �
1

	�k+q
2 + 
2�	�k

2 + 
2

+
�q�k cos �

	�k
2 + 
2 �� , �11�

where � is an angle between k and q. Graphene conductivity
can then be calculated by the Boltzmann transport theory
with �= �e2 /h�2	��F�vkF. The properties of graphene’s Dirac
fermions depend on the dimensionless coupling constant
�gr=ge2 /���.
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B. RPA ground-state energy in a gapped graphene

The ground-state energies are calculated by using the
coupling-constant integration technique, which has the con-
tributions Etot=Ekin+Ex+Ec. The kinetic energy per particle
is easy calculated as 2�F��1+
2 /�F

2�3/2−
3 /�F
3� /3.

The first-order exchange contribution per particle is given
by

�x =
Ex

N
=

1

2

 d2q

�2��2vq�−
1

�n



0

+�

d���0��q,i�,�� − 1� .

�12�

To evaluate the correlation energy in the RPA, we follow a
standard strategy for uniform continuum models,28

�c
RPA =

Ec

N
=

1

2�n

 d2q

�2��2

0

+�

d��vq��0��q,i�,��

+ ln�1 − vq��0��q,i�,���� . �13�

Since ��0��q , i� ,�� is linearly proportional to q at large q
and decrease only like �−1 at large � in both gapped and
gapless graphene, accordingly the exchange and correlation
energy built by Eqs. �12� and �13� are divergent.19,21 In order
to improve convergence, it is convenient at this point to add
and subtract vacuum polarization, ��0��q , i� ,�=
�, inside
the frequency integral and regularize the exchange and cor-
relation energy. Therefore, these ultraviolet divergences can
be cured calculating

��x = −
1

2�n

 d2q

�2��2vq

0

+�

d����0��q,i�,�� �14�

and

��c
RPA =

1

2�n

 d2q

�2��2

0

+�

d��vq���0��q,i�,��

+ ln� 1 − vq��0��q,i�,��
1 − vq��0��q,i�,� = 
��� , �15�

where ���0� is the difference between the doped ���
� and
undoped ��=
� polarization functions. With this regulariza-
tion, the q integrals have logarithmic ultraviolet
divergences.19 We can introduce an ultraviolet cutoff for the
wave vector integrals kc=�kF which is the order of the in-
verse lattice spacing and � is dimensionless quantity. Once
the ground state is obtained the compressibility � can easily

be calculated from �−1=n2 �2�n��tot�
�n2 , where the total ground-

state energy per particle is given by ��tot=��kin+��x
+��c

RPA. The compressibility of noninteracting gapless
graphene is �0

0=2 / �n�F� and the compressibility of noninter-
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acting gapped graphene is given by �0=2�1+
2 /�F
2�1/2 /n�F.

III. NUMERICAL RESULTS

In this section, we present our calculations for the ground-
state properties of gapped graphene in a continuum model at
low energy using the model described in Sec. II B. Our re-
sults considered a n-doped graphene sheet with �gr=1 and 2
where it is a typical value though to apply to graphene sheets
on the surface of a SiC or boron nitride substrates. We expect
that the physics of gapped graphene is different from gapless
graphene due to the sublattice symmetry breaking. In the
following, we will investigate these differences quantita-
tively.

Figure 1 shows the noninteracting dynamic polarization
function, ��0��q , i� ,��, of both gapped and gapless

graphenes in units of the noninteracting density of state at
the Fermi surface, D��F�, as functions of q /kF and � /�F. In
both cases, ��0��q , i� ,�� linearly diverges with q at small
wavelength region and decays as 1 /� at large frequency for
finite 
 values due to interband fluctuations in contrast to the
ordinary 2D electron gas.

The function −��0��q ,0 ,�� that contains a number of
noteworthy features is shown in Fig. 2�a�. First, as we men-
tioned before, the q→0 limit of the static polarization func-
tion is a measure of the number of excited states. Second, the
derivative of ��0��q ,0 ,�� at q=2kF is singular at finite 

values, the same as the normal 2D electron gas. Note that
��0��q ,0 ,�� at 
=0 is a smooth function. We stress here that
the second-order correction of the noninteracting polariza-
tion function is mostly responsible to this behavior. This sin-
gular behavior is responsible for several interesting phenom-
ena such as Friedel oscillations and the associated
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Ruderman-Kittel-Kasuya-Yoshida �RKKY� interaction.28 In-
terestingly, ��0��q ,0 ,�� reduces to the conventional 2D non-
interacting dynamic polarization function at very large 
 val-
ues. In this figure, we have shown −��0��q ,0 ,�� at 

=10�F which is exactly the same as the conventional 2D
noninteracting dynamic polarization function up to mid-q
values. The behavior of ��0��kF , i� ,�� in unit of the density
of state of gapped graphene for various 
 is displayed in Fig.
2�b�.

As an application of the noninteracting polarization func-
tion given by Eq. �6�, we calculate the electric conductivity
using the Boltzmann equation. We assume that d=1 Å and
�gr=2. Band gap and density dependence of dc conductivity
are shown in Fig. 3. Increasing disorder �increasing ni or
decreasing d for charge-disorder potential� decreases the �,
however increasing the gapped value decreases the dc con-
ductivity. Our calculations show that � decreases by increas-
ing 
 as a function of n /ni. Moreover, the density depen-
dence of � is linear at small d and 
 values and deviates
from linearity at large d values.29 In the inset, we have
shown the results for d=10 Å which physically determine
that the value of � increases by increasing d. Interestingly, a
large value of � will be obtained for suspended graphene or
by using the SiO2 substrate instead of using boron nitride or
SiC which result in opening a gap due to symmetry breaking
between sublattices.

We also calculated the exchange and correlation energies
as a function of 
 for various values of the cutoff �. The
results are summarized in Fig. 4. We have found that the
band-gap effects become more appreciable at large cutoff
values. The exchange energy is positive19 because our regu-
larization procedure implicitly selects the chemical potential
of undoped graphene as the half gap energy, doping either
occupies—quasiparticle states with energies larger than

—or empties—quasiparticles with energies smaller than
−
. Figure 4�b� shows the correlation energy ��c as a func-

tion of 
. Note that ��c has the same density dependence as
��x apart from the weak dependence on 
. In contrast to the
exchange energy �Fig. 4�a��, the correlation energy is
negative.19 It is important to note that there is a similar be-
havior between the kinetic energy and the exchange-
correlation energy as a function of 
. The kinetic energy is a
slowly varying function to 
 at small gap values and in-
creases by increasing 
 in middle and large values. Conse-
quently, the total energy increases as a function of 
. Figure
5 shows the total ground-state energy. In the inset, the total
energy per particle is shown as a function of 
 for various
values �gr at �=50.

Figure 6 shows the charge compressibility, � /�0
0, scaled

by its noninteracting gapless compressibility as a function of

 for different � values. The behavior of � suggests some
novel physics qualitatively different from the physics known
in the conventional 2D electron gas.19,21 Kinetic energy and
the exchange-correlation energy make negative contributions
to the compressibility and therefore reduce the compressibil-
ity by increasing the 
.

IV. CONCLUSION

We have studied the ground-state thermodynamic proper-
ties of a gapped graphene sheet within the RPA. Note that for
a doped graphene the Fermi-liquid description is valid. Our
aim in this paper is to investigate the ground-state properties
of a gapped graphene sheet by going from a system with a
linear dispersion relation with vanishing the energy gap, 

=0, to a system with a parabolic dispersion relation where

→�. To achieve this goal, we have calculated the band-
gap dependence of noninteracting dynamic polarization
function for doped graphene sheet. As a consequence, we
have presented results for the conductivity suppression over
a wide range of energy gap. We have presented results of
ground-state energies by incorporating many-body electron-
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�.

ALIREZA QAIUMZADEH AND REZA ASGARI PHYSICAL REVIEW B 79, 075414 �2009�

075414-6



electron interactions via RPA for gapped graphene sheet. The
total ground-sate energy increases by increasing the band-
gap values. This manner occurs based on our model Hamil-
tonian. We have finally presented results for the charge com-
pressibility suppression over the energy gap. Importantly, the
impact of gap energy on the thermodynamic properties
would be noticeable for 
�0.2�F.

Our results demonstrate the importance of including cor-
relation effects together with the gap effects in the thermo-

dynamic quantities of a gapped graphene. It should be pos-
sible to extend our work to include disorder effects. Another
direction would be to consider the effects of temperature in
the thermodynamic quantities.
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